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THE RELATION BETWEEN THE WIEDEMANN EFFECT AND 
THE JOULE MAGNETOSTRICTION EFFECT* 

? 

M. E. Fromy 

Engineer, Central Military Telegraphy Agency 

ABSTRACT: Wiedemann's magnetic torsion is a special case of 
Joule's magnetostriction. A cause and effect relation can be esta- 
blished between these two phenomena, provided all the deforma- 
tions produced in the Joule effect by the inductor field are taken 
into account. 

dal field which causes dimensional variations in all directions 
parallel to the field (the longitudinal Joule Effect) and perpendicu- 
lar to it (the transverse Joule effect). The study of these two 
effects shows an asymmetry which results in a twisting of the tube, 
and leads to an equation which accounts for all the peculiarities of 
the Wiedemann effect; in particular, it construes the existence of a 
maximum torsion and an inversion point for some fields different 
from those which produce some analogous effects in the Joule 
phenomenon. 

transverse and longitudinal Joule effects are equal and of the same 
sign. 

those of the two individual Joule effects, is in good accord with 
the experiment. 

In Wiedemann's experiments a tube is inserted into a helicoi- 

The torsion inversion is produced when the coefficients of the 

The composite curve of the Wiedemann effect, obtained from 

1. Previous Work. A number of experimenters have dealt with the magne- /13*** - 
tic torsion discovered by Wiedemann**. 

The majority limited itself to drawing curves of the torsion at angle by 
varying the metal, its dimensions, the field and the current, etc. 

The results obtained are  therefore rather confusing and not always in good 
agreement. The most indicative curves have been provided by the work of 
Jouaust, which was continued by Pellet, and by that of Williams who has pub- 
lished a whole series of studies on this question. In these he has attempted to 
establish a relationship between the Wiedemann effect and the Joule magneto- 
striction effect. 

*C.R. , t. 181 (Dec. 28, 1925), no. 26. 
** See the bibliography at the end of the article. 

*** Numbers in the margin indicate pagination in the foreign text. 
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These different works geem to condense the state of actual knowledge of the- 
1 subject. We shall recapitulak them briefly in order to elicit from them the general \ 
laws, then we shall i&rpret them and reduce the W i e d e e  effedto Joule's ~ 

fundamental phenomenon, of which it seems to be only a special case. 

Jouaust and Pellet used wires 0 . 2  to 0 . 3  mm in diameter and about 55 cm 
long. These wires were attached at their tops and hung vertically, being 
pulled down by lead weights. They were magnetized longitudinally by a long 
solenoid and carried a continuous current. The typical results for an iron wire 
0.21 mm in diameter and 55 cm long are summed up in Fig. 1; the torsion is 
measured, in millimeters, by the displacement of a spot on a graduated scale. 

P 

1 Figure 1. A. Iron Wire. Diameter: 0.021; Length, 55 em. , 
Williams' tests were made on tubes 80 cm long and 0.5 to 1 mm average 

radius. 

These tubes were magnetized longitudinally by a long solenoid; the excitaion 
current was transmitted either through the tube itself or an through an insula- 
ted wire placed along its axis. 

Williams measured simultaneously (on each of the tubes) the Wiedemann effect 
and the longitudinal Joule effect. The curves obtained are  all presented in the 
form of Fig. 2 which shows the results for a steel tube 80.2 cm long, with an 
inside diameter of 0.1538 cm and an outside diameter of 0.2386 cm. 

Finally, Williams has studied simultaneously the transverse and longitudinal 
Joule effects on samples of iron, nickel, and cobalt. The results obtained are  
presented in the form of Figs. 3 and 4, which show the results for an iron tube 
30.  74 cmlong and for a nickel tube. 

All these experiments lead to the following conclusions : 

1. In a magnetic field, a magnetic metal undergoes length changes in the 
direction of the field (the longitudinal Joule effect) and in all directions perpen- 
dicular to the field (the transverse Joule effect). 
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2. A tube of magnetic metal undergoes torsion (The Wiedemann 
.effect) in a uniform field parallel to its &xis and in a circular field 
produced by an axial current. The axial current can travel either 
through the tube itself or an insulated wire placed along the axis of 
the latter. The torsions are merely weaker in the first case than 
in the second. 

3. The phenomena seem of the same nature but the relationships 
which connect them appear complex. 

4. The longitudinal and transverse Joule effects are  very com- 
plicated in the case of iron and steel. In weak fields one observes 

first a longitudinal expansion and then a 
~ transverse contraction; in high strength 

fields, the reverse is observed. The curves 
show some inversion points which are  not 
necessarily common for the two effects. 

' 

In the case of nickel, a longitudinal con- 
traction and a transverse expansion are  al- 
ways observed; the phenomena seem much Figure 2. Steel Tube. Average 

Radius: 0.098 cm; Length: 80.2 cm. 

5. The rules governing the Wiedemann effect may be summed up as  follows: 

(a) For a constant field, the torsion increases at first proportionally to the 
I 

L -  ' - 
P ' ' W  100 .'IMI . . e 0 0 6  

I 

Figure 3. 

current up to a certain value, after. 
which it-seems to tend toward-a rfm?t or * 

a maximum. 

(b) For a constant current, the tor- 
sion increases at first proportionally to 
the field so long as the latter is  weak; 
then it passes through a maximum and 
decreases. The decrease, rapid at first, 
gradually slackens. 

In the case of iron, the decrease be- 
comes zero between 150 and 200 gauss, 
and then reverses. Both the increase 
and the decrease are less rapid in the 
case of nickel; moreover, there is no 
inversion point, the torsion is always 
of the same sign and decreases con- 
tinually and very slowly. 

(c) The maximum torsion is  produced at a certain field strength which is in- 
dependent of the current traversing the wire. Furthermore, this field strength 
differs from that which corresponds to  the maximum longitudinal Joule effect. 

(d) The inversion point in the case of iron seems to have no relation to the 
analogous points encountered in the case of the two Joule effects. 

(e) The torsions a re  of opposite sign for iron and nickel so long as the field 
remains less than the inversion value of iron. 

3 



'I 

& R l o i ; r  

0 

- 5  

-ia 

-l! 

- ' 6. All magnetostriction 
I phenomena i( Joule and Wiedemann) & 

/e$#* I exhibit hysteresis. 

Alone among all the authors, 
Williams has tried, not so much 
to establish a general theory of 
magnetostriction phenomena, but 
to relate magnetic torsion to the 
Joule effects of which it seems to 
be a direct consequence or a 
special case. Williams' rea- 
soning was the following: 

:g __.. 6 - I  - - L I -  - - - - - - d- - - - - - 
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Figure 4. 
Consider a tube inside of a mag- 

netic metal with a length L an average 
radius r (F'ig. 5) placed in a uniform 

field H parallel to its axis and to a circular field C produced by an axial current I. 

These two fields have a resultant ae which makes an angle '+ with H so that 

It follows that the length variations due to the Joule effect will occur along 
a helix slanting at an angle 9 to the generatrices of the cylinder. These length 
variations involve a displacement AB from the end A of the helix; if J designates 
the coefficient of the Joule effect, this displacement is expressed byr*,. 
There a re  two components, one parallel to the axis of the tube and corresponding 
to the variation in the axial length, the other tangent to the tube and characterizing 
a rotation by the angle: 

Expressing' tan '? as a function of H and I, one obtains finally: 
.WL. I *bT.p 

This equation takes into account the general behavior of the phenomenonfrom 
the point of which H becomes sufficiently large but is quite inaccurate at  low /@A 
values of H. Specifically, i f  the axial field is zero, we have the simple Joule 

"a" torsion should become zero. The Williams equation in- 
effect produced by the circular field C, and the magnetic 

dicates, to the contrary, that it becomes infinite. 

maximum; one can only foresee qualitatively its existence 
in speculating on the variation of J. 

It indicates that the torsion should always be propor- 
tional to I whereas, in practice, a limit o r  maximum is 
found in certain cases. 

sion reversal in the case of iron, a t  a fieldvalue different from 
those which correspond to the inversion points of Joule effects. 

Furthermore, this equation does not indicate a torsion 

Finally, the formula is quite useless in interpreting the tor- 
Figure 5. 
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The Williams theory seems, therefore, to be very approximate. We wanted, 
therefore, to establish between the Joule and the Wiedemann effects, a relation- 
ship resting on a more solid basis. 

To do this, it seemed indispensible to take into account not only the long- 
itudinal Joule effect but also the transverse Joule effect, which is of the same 
order of magnitude. This is what we are  going to do below, our purpose being 
not to establish a complete theory of the magnetostriction phenomena, but 
simply to find a relation between the Joule and the Wiedemann effects and to 
derive an explanation of the latter by utilizing the experimental curves of the 
two former effects. 

2. Fundamental Phenomenon. If a magnetic metal is placed in a uniform 
, H varies in length in directions parallel and perpendicular to the field. field 

Parallel to the field there is a variation in the quantity P which we shall 
consider positive if a contraction occurs, and negative in the case of an expan- 
sion. 

In all directions perpendicular to dQ there is a length variation in the quanitity 

This being so, let u s  imagine an infinite flat metal plate of a t'niC&iCSa .s md- 

We then have: 

P', to which we assign the same sign convention as P 1. 

located within a uniform field 2C parallel to its surface. 

1. a contraction P parallel to Jf, 

2. a contraction P' perpendicular to JC in the plane of the plate, 

3. a contraction ,p' in the direction of the thickness, i. e., a variation p'a 
of the thiclmess. 

Suppose now that this plane is rolled into a cylinder, while the field re- 
mains parallel at every point to the surface element, therefore in a planetangent 
to the cylinder; consequently, the field becomes helical o r  circular (in the case 
in which the axis of the cylinder is perpendicular to the field). 

There a re  again some contractions P parallel to the field at  each point and some 
contractions P' perpendicular to this field. However, since the upper part of the 
tube will be fixed in a rigid support, all the points on the rigidly held support cir- 
cumference will be constrained not to leave this circumference. The contractions 
P and P' will therefore produce some slipping parallel to the plane of the support, 
and this will manifest itself as a torsion of the tube. 

Thus one arrives at the Wiedemann phenomenon starting the Joule effects. 

We shall first study the deformations of an infinite flat plate; then we shall 
roll the plate to form a cylinder and we shall attempt to deduce the deformation 
of the tube from those of the plate. 
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I 3. The Deformation of a Plate. Let u s  imagine a magnetic metal plate with , 

a thickness &in the form of an infinite plane which we take a s  the plane of the ! 

figure Fig.  6 ) .  

t 

IA 

. .I .- 

Figure 6 

I 
I Let us draw on this plate a 

straignt line A and assume, a priori, 1 
that the points of this line are re- 1 
quired to to remain on it during all 
deformations of the plate. 

/17 Let us  consider a point 0 on this line 
a s  the origin of a system of coordinates 
and draw two coordinate axes, Oy and 
Ox, making an angle 9, with A. I 

Futhermore, let there be another 
point N on A, with coordinates of x and 
Y* 

- 

I 

NOW let us imagine that we plac2-1 
1 ' the plate in a uniform field of strength 

mLd parallel to  the plane of the fig- 
ure. For the sake of specificity, let 
the field be parallel to the Oy axis. , 

1 

We shall then have: I 

I 1, a contraction parallel to oy ' 
which will bring point N to  N' so that 
NN' == py, 

2. a contractioq p' parallel to OX j 
which will bring point N' to N" so that!; - 

3. a contraction p' in the direction of the thickness of the plate, or a varia- 
tion in the thickness p'e.. 

Point N has been superposed on N"; since, by definition, it may not leave the 
straight line which we assumed is fixed in space, we must rotate the entire figure, 
including the coordinate axes, by an angle a around 0, so as  to superpose Ntl 
onto N"', (which is on@. 

Thus the actual displacement of the point N is NN" ' on the straight line A, 
-- - NN" 

ON 
which corresponds to a contraction parallel to A. 

Assuming rather small deformations of the plate so as to be able to neglect 

To do that, let us construct the perpendiculars N'M to A and N"R to N'M; 
terms of the second order, the various components can be easily calculated. 

the solution of the triangles MNN' and N"RN', on the one hand, and of the curvi- 
linear quadrilateral RMNttfNtl  (assumed to be a rectangle) on the other, gives: 
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N W  .ps = - = * ON : 
N'Nm N'M - N'lt NN' cos? - N'N' ein? 

ON ' . ON ON I 

RN' + RY - . N'N' cos? 4- NN' a h ? .  ' 

ON - ON . . ' .  
- a=----= - 

which finally gives 
- P A  = p sin3? + p' cos'cp; 

J = (p - p') sincpcoscp. 

Now let us consider another point P on the plane. Prior t o  the deformation 
of the plane, P is located on line OT perpendicular to A and has the coordinates 
of x' and y' . 

Under the action of magnetostriction effects, point P underposes three conse- 
cutive displacements : 

1. a displacement PP'4JI'q due to  the contraction p'; ,; 

2. a displacement P'Pft=@'rdue to the contraction "p' 

3. a rotation by the angle a ,  correspoding tu the displacement N"N" ' of 
the point N, which brizge point P" to Ptr ' . 

The resultant displacement of PP" corresponds to: /g 
PR' 

1. a contraction I Pr = 7 , p a r a l l e l  to OT; 

2. a slip R'P" ' parallel to  A that is a unit slip. 
R'P'" 9 = -  OP .* 

01 

By dropping perpendicular P'A onto OT and P"B onto P'A, reasoning as before 
andmakingpoints R' and R" coincide (these are very close to each other if a is small). 
one finds : 

, 

which finally gives: 
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Conclusion. To conclude this study let us pose the problem in another form. 

Let us consider an infinite flat plate of a magnetic metal with a thickness a. 

i 
I 
t 
r 
I 
1 

IT 
I 
I 
I 

Figure 7 

Let us imagine a straight line A situated in this plane; all the points of A are  
constrained to  shift along this ljne, whatever happens to the plate. Let us place 
this plate in a uniform field of strength #, parallel to the plate and making an angle 
T with the direction T perpendicular to A. 

The deformations due to  magnetostriction are represented in the present case 
by : 

2. a contraction along the T (the perpendicular to A) 

3. a unit of the various layers of the metal parallel to A: 

I L- t (p - p') sin p ~ I J  T ; I 
I 

\ -  

4. a contraction p' in the direction of the thickness 

4. Deformation of a Cylinder. Consider a cylindrical tube made of a magnetic 
substance. Let L be the length; r average radius; and t, the thickness of the cy- 
linder tube wall. 
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Let us assume, for simplicity, that the thickness t is small compared to the 
average radius r. 

Then, let us assume that this cylinder is fixed at its upper end to some 
support and let us place it in two continuous fields: 

1. a uniform field of the strength H, parallel to the axis of the cylinder; 

2. A circular field C produced by a current I passing through an insulated 
conductor arranged along the axis of the tube. 

If E is small compared to r ,  we can assume that the circular field is the same 
at  all points in the metal and equal to 

2I c= -. r 

Therefore, at any point M of the tube, 
by the two fields H and C, which result in 

the metal is simultaneously affected 
a combined field 

making an angle 'p with the corresponding generatrix of the cylinder such that 

The tube is deformed by this field contracting or expanding along the direction 
of the resultant field JC and along the all perpendicular directions to that field. 

Furthermore, all the points which are located in the circumference constrained 
by the support must remain in the plane of this circumference. 

Under these conditions we have a situation identical to that we have encoun- 
tered in the case of the flat plate. 

The circumference encased by the support plays the role of the straight line 
A, and the resultant field 2, that of the uniform inducing field. 

The actual case can be deduced f rom the preceding case by rolling the metallic plate 
into a cylinder around an axis parallel to the plane of the plate and perpendicular to A ; 
the straight line A thus becomes a circular figure coinciding with the cylinder support. 

The resulting deformations of the tube will be: 

1. a radial deformation caused by the contraction along the circumference 
of the tube: 
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3. a slip parallel to the circumference of the tube support, that is, a unit 
torsion: 

0 %  w- fl rln, carp; r 

4. a thickness variation $. 

Substituting for y ,  its value as a function of H and C, we finally obtain: 

The only equation which interests us at the moment is the third one, which 
allows us to compute the torsional angle, that is, the Wiedemann effect. We 
shall now deal only with that effect. 

Discussion. The torsional angle equation 

makes it possible to take into account all the features of the Wiedemann effect, 
contrary to the approximate equation developed by Williams. 

Without extending the discussion further, we see immediately that the torsion 
is zero when one or the other of the two fields becomes zero; in which case only 
the contractions ,b and ips\, due to the simple Joule effects, remain. Between these 
two extremes, we can finda torsional maximum, the equation for which we shall 
investigate below, and which is independent of the maximum Joule effect. 

Thus the torsion can become zero even if the inducing fields and the Joule 
effect are not zero. For this to occur, it is sufficient that the coefficients P 
and p' of the two Joule effects be equal and of the same sign, as can occur in 
the case of iron (see the curves of Fig. 3). 

The direction of the torsion changes with the sign of the factor ( P - ~ I ) ,  which 
explains why the rotation of the tube end has a different sign for iron and nickel. 

Finally, the torsion inverts when one of the factors H or C changes sign. 

A complete discussion of Eq. 4 is complex. It becomes, however, very 
simple when one of the fields is weak compared to the other. 

First let us study the case of C( H. 

In this case C2 is negligible compared to H2 and the expression for 8 becomes 

10 



(5) 

In addition, p and p' , which are functions of the resultant field x = qfla + 0, 
can be regared simply as  functions of H. 

This gives, first of all, that the torsion is a linear function of the weaker 
field C, so long as C2 can be neglected compared to H2. 

The torsion variation as a function of the stronger field H is more complicated; 
it varies as the function 

P - P' y=-. 
I/ 

The functions p and p' arenot known analytically but are given by the experi- 
mental curves. 

Imagine that they are known and assume they are represented in the form of 
Fig. 8 (the solid lines). 

9 ! 
, 
i 

, 

a 

- -__ 
The function I p - p'' 

the algebraic difference 
lg& will be rep 

H ' I  

I I 
# 
I 
I 

Figure 8 

is represented by the dashed curve whose ordinates are 
of theordinatesofthe curvesfor p and p', and the function 
resented by the tangent to the angle p,  that is ,  the slope of 

\ the cord OM. 
One can then write: 

, c 
I fJ=e- , tanp.  

r 

The discussion of the change in 9 as a function of the field H at  constant 
C then becomes very simple. 
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At weak H, the torsion obeys Eq. 4, that is ,  it varies approximatelyproportional- 
ly to H. 

When C2 becomes negligible compared to  H2, the torsion is governed by Eq. 6. 
It continues to increase rapidly, passes through a maximum H=h (at which the cord 
becomes tangent at A on the dashed curve); then it decreases, first rapidly, then 
slowly. It becomes zero when H reaches the value at which p = p' , and then in- 
verts. 

The torsion maximum occurs for the H value which corresponds to the max- 
imum of tan 8; this value which does not depend on C. 

Thus far we have assumed that the circular field C was weak compared to H, 
but the preceding reasoning applies without modification to the case in which H is 
weak compared to C, the roles of the two fields being simply reversed. 

In this case, 8 is given by the equation 
II . 
r o=e-w p i  

(7) 

It follows that the torsion will be proportional to H and will vary with the 
function C as 

lan,B=- P- P' 
I c -  

Finally, if the fields H and C are of the same order of magnitude, one must 
use the complete Eq. (4), which is difficult to discuss; but in practice the region 
of the curve in which the magnitudes of the two fields are close is rather short 
so that one can draw it by extrapolation between the two portions of the curves 
governed by Eqs. (6) and (7). 

5. Comparison with the Experiment. A. Variation with a Constant Field and a 
~- ~ 

Variable Current. 

In Williams' experiments, the circular field C was produced by a current of 

9 1 :was the order of 
the order of several amperes traveling along the axis of a tube with an average 
radius of approximately 1 mm. It follows that the field 

several gauss. However, the field H varied form 0 to 200 or 300 gauss, and 
greatly exceeded C over almost the entire length of the curve. The rule for the 

C=- 
1' tot?. 

Wiedemann effect then is given by the equation: /E 
, .=--t&p. 4 I '  

10 r' 

This equation shows that, for a constant field, the torsion is proportional to the 
current. This specifically, is the case for  the maxima, as Fig. 2 indicates. The 
information in Fig. 2 provides the following table: 
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TABLE 1 

+ 

9 
T I I 

i 180 

1 .1  1 80 

e f80 

I , 
I 
~ 

I 

On the other hand, in their tests with a constant field and a variable current, 
Jouaust and Pellet usedfine wires magnetizedby weak fields H and strong currents. 

In the case of Fig. 1 A, the wire used was 0.021 cm in diameter and carried 
a current of several amperes which created a field C of several tens of gauss 
at the periphery of the tube. The H field was only about 15 gauss. 

The torsion for a constant field and a varible current, governed at first by Eq. (8) 
when the current is weak, starts to obey Eq. (7) when C becomes greather than H. 

It turns out in this case that the torsion is no longer proportional to I at large 
values of I; it tends toward a maximum which occurs at the valne of I which gives 
a maximum tan p.. 

which corresponds to the maximum in the curve for a constant current and a ' 
variable field (Fig. 1 B); it should fall between 30 and 40 gauss. 

The C value corresponding to this maximum must be the same as that of H 

T ~ 

Now, curve A of Fig. 1 shows that the maximum occurs in the vicinity of 4 
amps, that is, for a value of C, at the tube peripherey of: 

= 38 gauss, 3 x 4  
10 x 0.021 

C= 

this C is of the same order as that cited before (we assumed here that the wire 
behaves as an infinitely narrow tube consisting primarily of a very thin envelope), 
the internal layers serving only as conductors of the current. 

B. The Variation with a Constant Current and a Variable Field. 

In this case C is weak compared to H and the Wiedemann phenomenon obeys 
the equation: 

4 ' 1  
8- -- tanp. 10 r* 

Without stating any hypotheses, this equation shows that the torsion passes 
through a maximum at that value of H which makes tan f3 maximum and which 
does not depend on I. 
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All the maxima should then be located on the same vertical, as  the curves 
in Fig. 2 indicate. 

To the complete discussion, we would have to know the two curves for the 
Joule effect and that for the Wiedemann effect on the same sample. Williams' 
experiments do not provide enough material for such a discussion. 

But one can attempt a synthesis starting from the curves of Fig. 3. for an 
iron cylinder of length L = 30.7 CM. The transverse Joule effect curve is 
available up to 200 gauss; that of the longitudinal effect stops at 50 gauss; in 
order to be able to discuss it, we assume that it has the shape indicated by dashes 
(Fig. 9). This seems likely, given the usual behavior of the Joule effect in iron. 

Let us draw the dot-dash curve whose ordinates are  the algebraic difference 
of the ordinates of the two first curves; this curve represents the function: 

'SI = ( p - O L ,  

for iron. 

Let us now imagine a tube constructed of the same iron and of the same length 
(L = 30.7 cm) with an mcrzge. radius of r = 0 . 1  cm, which is assumed to be large 
compared to the thickness t . 

The general expression for the overall torsion of a tube in the Wiedemann 
effect is 

or 

If we make, for example, I = 1 amp, and r = 0 . 1  cm, we have 

where y is a function of the resultant field 

This equation allows us to draw an assumed curve for the Wiedemann effect 
for the case of iron (Fig. 9). 

This curve has the same shape as curves obtained directly by experiment. 

It exhibits a maximum at 8 gauss which corresponds to a total torsion of 
75 sec. 

14 
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Figure 9. 

If the tube were 80 cm long instead of 30.7, the torsion would be 192 sec, 
a number very close to that in Fig. 2 (180 sec). 

There is again a decrease, first rapid, then slow; at a stronger field, the 
torsion becomes zero and inverts. "lie inversioc point occurs in the vicinity 
of 160 gauss. 

In the case of a nickel tube, one could reason in the same fashion, starting 
from Fig. 4, had Williams given the curve for the transverse effect. A plot 
analogous to  that in Fig. 9 would have been obtained, but the variations would be 
slower; in addition there would not have been an inversion point. This is exactly 
what we find by experiment. /E 

6. Conclusion. The formula established above represents rather well the 
behavior-nn's magnetic torsion from the qualitative point of view, and 
allows this torsion to be considered as a simple case of magnetostriction. 

Specifically, it takes into account: 

1. the proportionality of the torsion to the current so long as the circular 
field remains smaller than the axial field; in the opposite case, the behavior ceases 
to be linear, and the torsion reaches a maximum; 

2. the existence of a maximum torsion, for a constant current and a weak 
field, whose strength differs from that inducing the corresponding Joule effects; 

3. the existence, in the case of iron, of an inversion point at a field strength 
at which the Joule effects a re  not zero. 

The quantitative verifications cited above would seem satisfactory, but they 
could be merely simple coincidences; one could only judge their value by com- 
paring them with the curves of the two Joule effects and the Wiedemann effect 
surveyed simultaneously in the same tube or sample of iron, nickel, or cobalt. 
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